

USSF

AFR

Perspectives on Nondestructive Evaluation of Bonded Joints

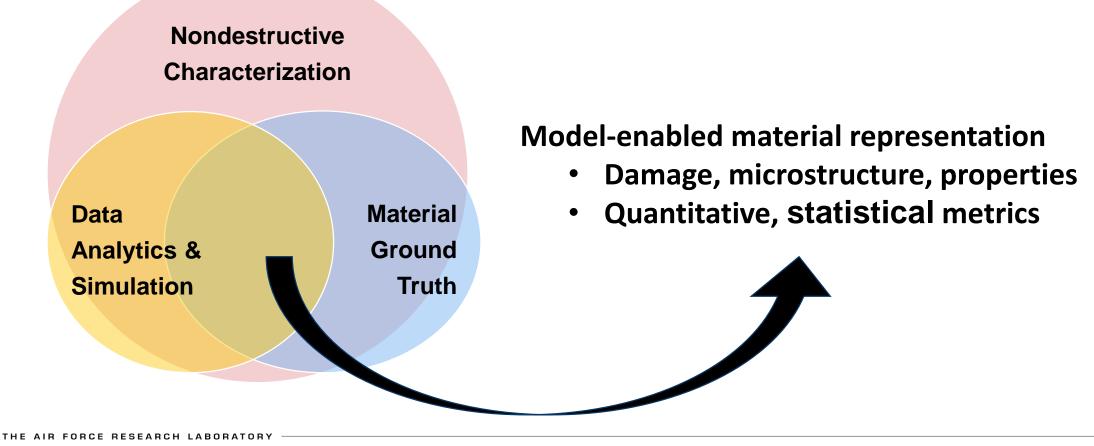
Dr. Eric Lindgren, Nondestructive Evaluation Technology Lead, AFRL/RXNW 19 October 2022

Distribution Statement A: Unlimited release, Case Number AFRL-2022-4393

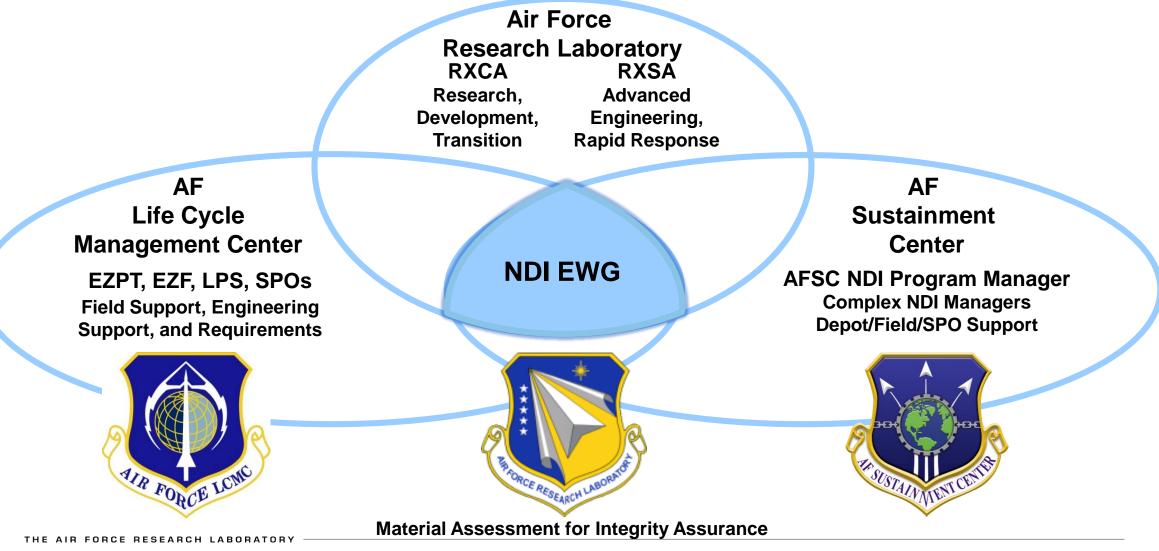
Outline

- Introduction to Nondestructive Evaluation (NDE) and Material State Awareness
- Desired Capabilities for Bond-line Inspection
- Current NDE Capabilities / Limitations
- Introduction to Laser Bond Inspection (LBI)
- Capabilities and Gaps
- Current Exploration
- Thoughts for the Future
- Discussion

Acknowledgments


- Air Force Research Laboratory Materials and Manufacturing Directorate
 - Manufacturing Technology Division
 - Structural Materials Division
 - System Support Division
- Air Force Life Cycle Management Center
- NAVAIR
- Boeing Research and Technology
- Northrup-Grumman
- Lockheed-Martin
- LSP Technologies
- TRI-Austin

Materials State Awareness


Reliable, Quantitative, Digitally-Enabled Materials & Damage Nondestructive Characterization; regardless of scale

NDE Executive Working Group

INNOVATE, ACCELERATE, THRIVE – THE AIR FORCE AT 75

Desired Capability: NDE of Bonded Repairs

AFRL Testing

Representative Manufacturing

Representative Depot Maintenance

- Ensure bonded region has no unacceptable flaws
- Ensure bonded region has appropriate strength for application
- Research, manufacturing, and sustainment: differing requirements on accuracy / precision
- NDE capabilities must meet requirements of each location

NDE Sensing Physics

Electromagnetics

Includes Hz to 30+ PHz (x-ray)

- Pros:
 - Hz THz: very sensitive to surface features
 - PHz: can penetrate materials (e.g. x-ray)
- Cons:
 - Hz THz: cannot penetrate conducting materials
 - PHz: safety considerations, not sensitive to low contrast features, e.g. cracks
- Uses:
 - Hz THz: surface flaws, e.g. surface breaking cracks, local conductivity change
 - PHz: volumetric flaw, e.g. voids

<u>Mechanical Waves</u>

Includes Hz to GHz (ultrasound)

- Pros:
 - Penetrate into materials
 - Reflections from defects with impedance changes
- Cons:
 - Scattering and mode conversation can cause extraneous signals
 - Sensitivity and propagation distance as a function of frequency
- Uses:
 - Subsurface flaws, e.g. cracks and voids

Thermal Diffusion

Requires thermal energy flow

- Pros:
 - Visualize with IR imaging
 - Rapid for large areas
- Cons:
 - Less sensitivity than other methods
 - Resolution limited by lateral thermal diffusion
- Uses:
 - Polymer matrix composites
 to detect large flaws

Advanced signal processing / analytics can be used for all methods

THE AIR FORCE RESEARCH LABORATORY

Capabilities and Limitations of NDE Methods

Capabilities

- Detects volumetric flaws: e.g. voids, delaminations
- Detects 2D flaws: e.g. cracks
- Detects material changes: e.g. cure state, microstructure
- Quantifies some material properties: e.g. elastic moduli, electromagnetic properties

Limitations

Cannot directly measure strength

Addressing Limitation

Hypothesis

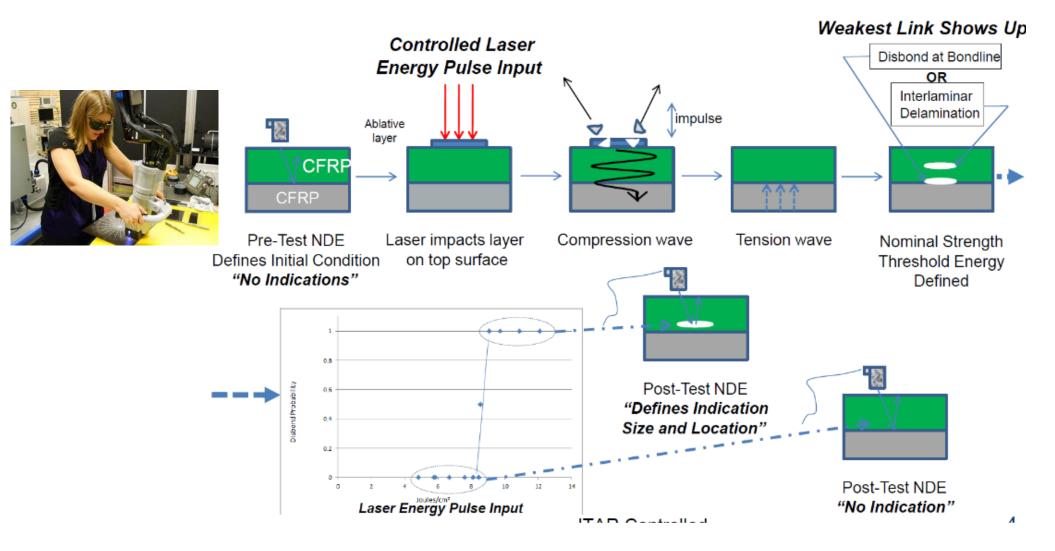
 Use NDE-based capabilities to perform localized proof-test

Approach

- Insert sufficiently large elastic tensile wave to test bond strength
- Laser pulse to achieve desired tensile wave
- NDE methods to detect delaminations if weak bond

Pay-off

• Localized method to ensure bond strength



How Laser Bond Inspection (LBI) Works

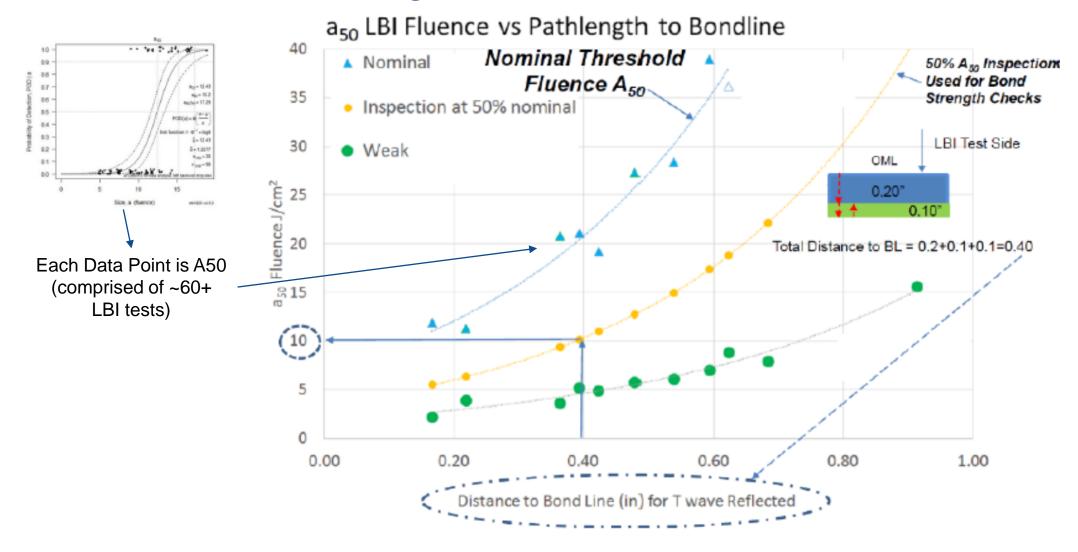
LBI Validation Programs

Phase I

- Verify composite bond strength measurement
- Establish TRL5/MRL5 and identify required maturation to validate technology
 Phase II
- Develop LBI methodology / protocols for inspection of composite material systems
- Validate methodology on two material systems / part-specific features
- Demonstrate full-scale configured component LBI testing with varying bond quality
 Add Work
- Complete fatigue studies
- Demonstrate LBI on scarf or repair geometries, including investigating levels of porosity
- Transition methodology and calibration approach to industry

Summary of Testing to Date

Description Panel / Test / Inspection	IM7+AS4 / 977-3 FM300-2M	IM7+T650 / 5320-1 FM309-1	Total
Two Independent LBI Systems	2	2	2
Laminate Panels	19	6	25
Bond Assemblies	50	14	64
- Oven Cured	12	0	12
- Autoclave Cured	38	14	52
Mechanical Testing			
Flatwise Tension	144	36	180
Single Lap Shear	144	36	180
Double Cantilevered Beam (DCB)	55	10	65
Post LBI (DCBs)	45	-	45
DCB Fatigue (single/multi shot)	5	1 ¥1	5
Mech. Coupon Failure Analysis	393	82	475
High Resolution Failure Analysis	4	-	-
Photo-microscopy	30	-	30
Total LBI Testing			11556
- Boeing	6073	3528	9601
- LSPT	1815	140	1955


-205 and -209 Nom POD on constant sections every mark \sim 300 / str. -207 Nom 50% Nominal A₅₀ every 2 marks \sim 180 LBI / str.

THE AIR FORCE RESEARCH LABORATORY

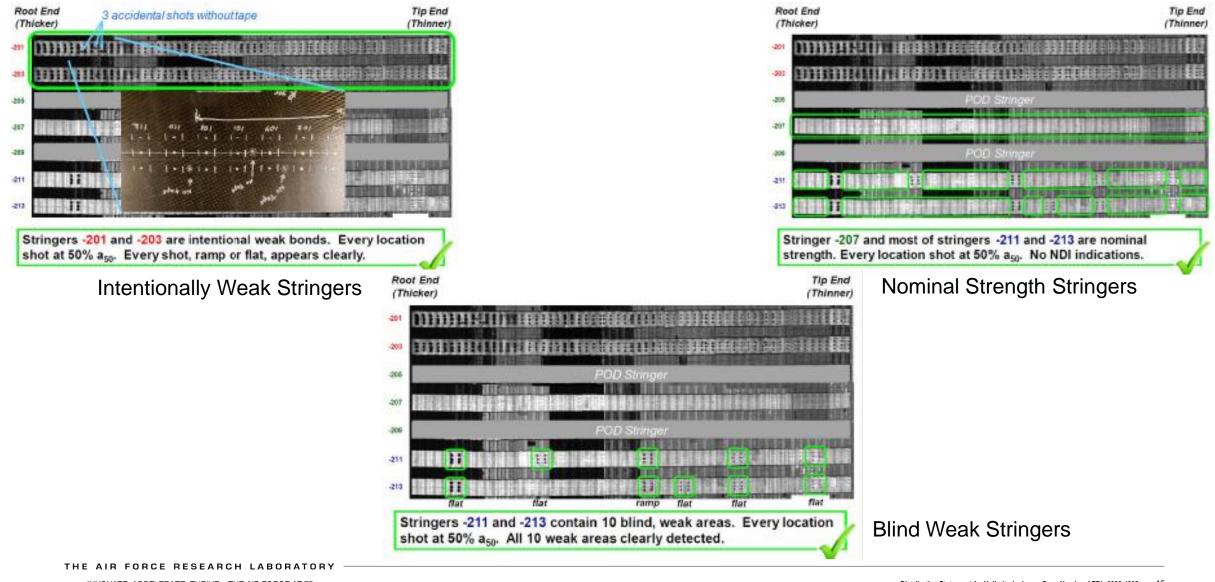
LBI POD for Design Considerations

Post LBI Ultrasonic NDE

Production Scanner

- Scan entire panel with one scan
- High quality data / high positional accuracy
- No loss of coupling
- 0.5 day: set up, 3 minute: scan, no time: stitch images

Portable Scanner

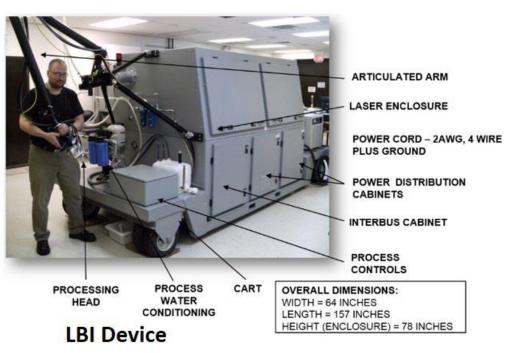

- Limited area of scan
- Positional hysteresis
- Coupling losses
- Slower scan speeds
- 0.5 day: set up, 0.5 day: scan, 1 day: stitch images

INNOVATE, ACCELERATE, THRIVE – THE AIR FORCE AT 75

Representative LBI Test Results

Capabilities and Challenges

Validated Capabilities

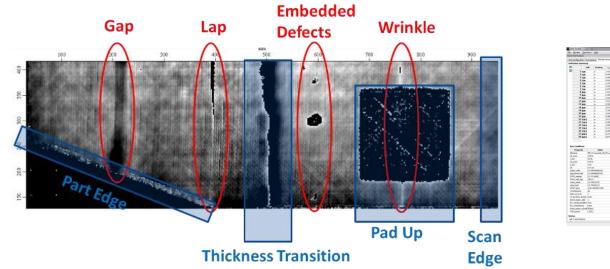

- Bond strength determination
 - This is **HUGE!**

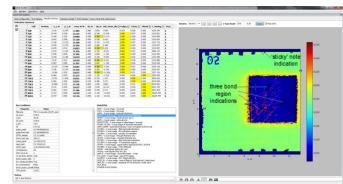
Challenges

- Non-planar geometry
- Post LBI NDE assessment
 - Ultrasonic signal interpretation
- System physical dimensions
 - Constraint for outside of manufacturing
- System durability and capability verification
 - Down-time concerns and sensitivity calibration

Challenges being addressed in ongoing programs

• Successful completion simplifies implementation





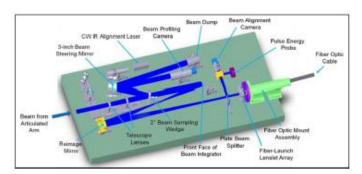
Post LBI Assessment

- Implement Human Data Review Procedures in Algorithms
- Assisted Data Analysis (ADA) for UT of Composite Panels
 - 100% Ultrasonic inspection for manufacturing QA
 - · Adapt to LBI accept / reject criteria
 - In-progress SBIR with TRI-Austin

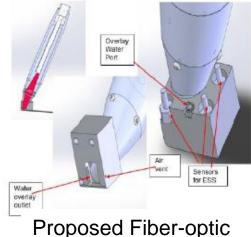
THE AIR FORCE RESEARCH LABORATORY

System Dimensions / Durability / Calibration

Dimensions

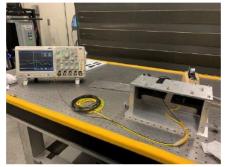

- Fiber-optic delivery system
 - In development at LSP Technologies
- Improved delivery system
 - In development at LSP Technologies

Durability


- Engineering solutions / work-arounds
 - LSP Technologies / Boeing / Northrup-Grumman
 - Cooperative lessons learned!

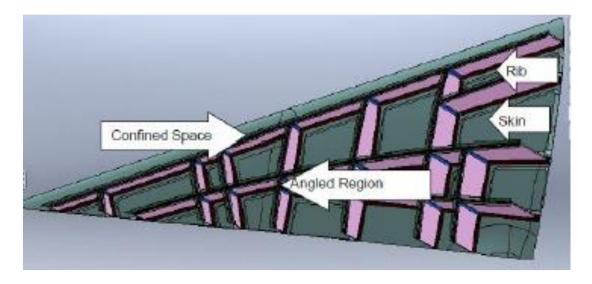
Calibration

- Multiple solutions in work
 - Boeing / LSP Technologies


Proposed Fiber-optic Launch System

Proposed Fiber-optic Launch Box

Mirror Failure



Proposed calibration fixture

Non-planar Geometry

- Most testing to date on bonded flat panels
- Curve samples in work
- Scarf joints in work
- Geometry verified by case-by-case testing
 - Simulation capability would be beneficial

Way Forward to Realize LBI Capability

Validated capability, more engineering required

Address identified challenges:

- Geometry
 - Additional testing in progress
- Post test NDE
 - Development program underway
- Durability
 - Additional robustness being integrated into new designs
- Dimensions
 - Multiple contracts to address size and weight
- Sensitivity Calibration
 - Several options being pursued

THE AIR FORCE RESEARCH LABORATORY

Summary

- Enduring challenge for NDE: measure bond strength
- LBI holds promise to address need
 - Strength measurement by a local proof test
 - Capability validated
- Additional challenges remain
 - Test article geometry
 - Test system dimensions / durability
 - Post-test NDE efficiency
 - Sensitivity calibration
- Programs addressing challenges
- Integrated team pursuing success
 - DOD R&D, Large and small businesses
- · Potential to address bonded repair strength verification

AFRL

Dr. Eric Lindgren: eric.lindgren@us.af.mil

Distribution Statement A: Unlimited release, Case Number AFRL-2022-4393